Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 23(4): 520-531, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38324336

RESUMO

Relapsed or refractory B-cell acute lymphoblastic leukemia (R/R B-ALL) and lymphomas have poor patient outcomes; novel therapies are needed. CD22 is an attractive target for antibody-drug conjugates (ADCs), being highly expressed in R/R B-ALL with rapid internalization kinetics. ADCT-602 is a novel CD22-targeting ADC, consisting of humanized mAb hLL2-C220, site specifically conjugated to the pyrrolobenzodiazepine dimer-based payload tesirine. In preclinical studies, ADCT-602 demonstrated potent, specific cytotoxicity in CD22-positive lymphomas and leukemias. ADCT-602 was specifically bound, internalized, and trafficked to lysosomes in CD22-positive tumor cells; after cytotoxin release, DNA interstrand crosslink formation persisted for 48 hours. In the presence of CD22-positive tumor cells, ADCT-602 caused bystander killing of CD22-negative tumor cells. A single ADCT-602 dose led to potent, dose-dependent, in vivo antitumor activity in subcutaneous and disseminated human lymphoma/leukemia models. Pharmacokinetic analyses (rat and cynomolgus monkey) showed excellent stability and tolerability of ADCT-602. Cynomolgus monkey B cells were efficiently depleted from circulation after one dose. Gene signature association analysis revealed IRAK1 as a potential marker for ADCT-602 resistance. Combining ADCT-602 + pacritinib was beneficial in ADCT-602-resistant cells. Chidamide increased CD22 expression on B-cell tumor surfaces, increasing ADCT-602 activity. These data support clinical testing of ADCT-602 in R/R B-ALL (NCT03698552) and CD22-positive hematologic cancers.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Imunoconjugados , Linfoma de Células B , Humanos , Ratos , Animais , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Macaca fascicularis , Antineoplásicos/uso terapêutico , Linfoma de Células B/tratamento farmacológico , Neoplasias Hematológicas/tratamento farmacológico , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
2.
Mol Oncol ; 17(10): 2090-2108, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37518985

RESUMO

Promyelocytic leukemia protein (PML) modulates diverse cell functions that contribute to both tumor suppressor and pro-oncogenic effects, depending on the cellular context. We show here that PML knockdown (KD) in MDA-MB-231, but not MCF7, breast cancer cells, prolonged stem-cell-like survival, and increased cell proliferation and migration, which is in line with gene-enrichment results from their RNA sequencing analysis. Of note, increased migration was accompanied by higher levels of the epithelial-mesenchymal transition (EMT) regulator Twist-related protein 2 (TWIST2). We showed here that PML binds to TWIST2 via its basic helix-loop-helix (bHLH) region and functionally interferes with the suppression of the epithelial target of TWIST2, CD24. In addition, PML ablation in MDA-MB-231 cells led to higher protein levels of hypoxia-inducible factor 1-alpha (HIF1a), resulting in a higher cell hypoxic response. Functionally, PML directly suppressed the induction of the HIF1a target gene vascular endothelial growth factor A (VEGFa). In line with these results, tumor xenografts of MDA-MB-231 PML-KD cells had enhanced aggressive properties, including higher microvessel density, faster local growth, and higher metastatic ability, with a preference for lung. Collectively, PML suppresses the cancer aggressive behavior by multiple mechanisms that impede both the HIF-hypoxia-angiogenic and EMT pathways.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Proteína da Leucemia Promielocítica/genética , Fator A de Crescimento do Endotélio Vascular , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição/genética , Movimento Celular
3.
Mol Oncol ; 13(6): 1369-1387, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30927552

RESUMO

The multitasking promyelocytic leukemia (PML) protein was originally recognized as a tumor-suppressive factor, but more recent evidence has implicated PML in tumor cell prosurvival actions and poor patient prognosis in specific cancer settings. Here, we report that inducible PMLIV expression inhibits cell proliferation as well as self-renewal and impairs cell cycle progression of breast cancer cell lines in a reversible manner. Transcriptomic profiling identified a large number of PML-deregulated genes associated with various cell processes. Among them, cell cycle- and division-related genes and their cognitive regulators are highly ranked. In this study, we focused on previously unknown PML targets, namely the Forkhead transcription factors. PML suppresses the Forkhead box subclass M1 (FOXM1) transcription factor at both the RNA and protein levels, along with many of its gene targets. We show that FOXM1 interacts with PMLIV primarily via its DNA-binding domain and dynamically colocalizes in PML nuclear bodies. In parallel, PML modulates the activity of Forkhead box O3 (FOXO3), a factor opposing certain FOXM1 activities, to promote cell survival and stress resistance. Thus, PMLIV affects the balance of FOXO3 and FOXM1 transcriptional programs by acting on discrete gene subsets to favor both growth inhibition and survival. Interestingly, PMLIV-specific knockdown mimicked ectopic expression vis-à-vis loss of proliferative ability and self-renewal, but also led to loss of survival ability as shown by increased apoptosis. We propose that divergent or similar effects on cell physiology may be elicited by high or low PMLIV levels dictated by other concurrent genetic or epigenetic cancer cell states that may additionally account for its disparate effects in various cancer types.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fatores de Transcrição Forkhead/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Western Blotting , Neoplasias da Mama/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Imunofluorescência , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Fatores de Transcrição Forkhead/genética , Células HEK293 , Humanos , Imunoprecipitação , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Proteína da Leucemia Promielocítica/genética
4.
Methods Mol Biol ; 1890: 77-90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30414146

RESUMO

FOXO3 is a tumor suppressor that orchestrates the expression of genes that regulate cell cycle progression, apoptosis, metabolism, oxidative stress, and other important cellular processes. Its inactivation is closely associated with tumorigenesis and cancer progression. On the other hand, sirtuin proteins have been demonstrated to be able to deacetylate, thus causing FOXO3 inactivation at the posttranslational level. Therefore, targeting sirtuin proteins renders new avenues for breast cancer treatment. Here, we describe three procedures for studying FOXO3 posttranslational modifications controlled by sirtuin proteins in cancer cells.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Western Blotting , Linhagem Celular , Células Cultivadas , Imunofluorescência , Expressão Gênica , Humanos , Imunoprecipitação , RNA Interferente Pequeno/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA